DIVERSITY AND ABUNDANCE OF SOIL ARTHROPODS IN *CAPSICUM* FIELDS IN WARANGAL DISTRICT, ANDHRA PRADESH, INDIA

BRAHMAM, P., SAMATHA. CH AND SAMMAIAH. CH*

ENVIRONMENTAL BIOLOGY LAB , DEPARTMENT OF ZOOLOGY KAKATIYA UNIVERISTY, WARANGAL – 506 009, ANDHRA PRADESH, INDIA

*E-mail: sammaiah_ch@yahoo.com, pattembrahmam@gmail.com

ABSTRACT

Capsicum is a major commercial crop of the world. Soil arthropods were collected and identified from Capsicum field with help of pitfall traps. They are critically important soil organisms as decomposers, indicators and beneficial group in the soil. A total of 49 species were identified from insects such as Collembola, Orthroptera, Hymenoptera, Coleoptera and other than insects Mites, and Spiders. The Collembola represented high percentage among the species of other groups, in the percentage of different groups Collembola, followed by Hymenoptera, Coleoptera, Orthroptera and Acari and Aranea during the study period.

KEY WORDS: Capsicum, soil arthropods, percentage,

INTRODUCTION

Capsicum annum is considered as one of the major commercial crops of the world. Both green and dried capsicum is the important components of our routine diet and it also has medicinal value. Capsicum also contains vitamin A, C and E. Because of these reasons capsicum is having lot of export potential. Capsicum is raised over an area of 1776 thousand hectares in the world, with a production of 7182 thousand tones. India, China, Korea, Nigeria, USSR, Mexico are the major capsicum growing countries in the world. India is the largest producer of capsicum in the world. In India, capsicum crop is raised during last three decades for a ripegreen dry fruit varies from 634 to 921 thousand hectares, with total production of 364 to 895 thousand tons of dry fruits with an average yield of 574 to 957 kg/ha. The major capsicum growing districts in Andhra Pradesh are Dharwad, Nagapur, Prakasam, Khammam, Guntur and Warangal. Its ranks first both in area (1.85 lakh.ha.) and production (2.7 tones) with productivity of 1447 kg/ha.

A number of soil arthropods which attack capsicum are primary consumers or decomposers. The adults feed on leaves, stems, roots, flowers, fruits. Some adults are predators of the other insect species (Moron, 1997, 2004). Edephic species occur in all types of soils (Moron, 2001). A significant proportion of the world's biodiversity is recorded in agro ecosystems (Pimental et al., 1992). The increasing use of agrochemicals in such systems affects non-target organisms in soil and water (Reinecke and Reinecke, 2007) and is often a major factor contributing to declining biodiversity (Benton et al., 2003. Bianchi et al.. 2006). Nevertheless agricultural production is directly linked with the number and quantity of agrochemicals used and soil arthropods are a vital link in the food chain as decomposer and without these organisms, nature would have no way of recycling organic material on its own,

(Trombetti and Williams. 1999). The processes of decomposition are controlled largely by soil arthropods include the mites (Acacina) sprigtails (Collembola), followed by some families of insects and arachnids (Carvalho, 2006) with some soil invertebrates like protozoan and worms which also contribute to the soil community by mixing, loosening and aerating the soil (Evans, 1992). Soil arthropods are important in processing detritus and regulating the availability of nutrients (Anderson 1988). Soil fauna are sensitive to environmental conditions in the soil and can move through the soil profile in response to changes in temperature and water availability in order to find suitable micro habitats (Coleman and Crossley, 1996). Soil arthropods are one group of soil invertebrates that influence soil processes in a variety of Their fundamental ways. abundance. community composition and effects on various soil processes have been studied in terrestrial ecosystems (Peterson and Luxton, 1982).

Arthropods are critically important in decomposition, nutrient cycling and other to the effects of fragmentation. Arthropods sensitivity to disturbance makes them especially useful as indicator species. The aim of this investigation was to describe the diversity of soil arthropods fauna inhabiting in *Capsicum* fields in Warangal District of Andhra Pradesh.

MATERIAL AND METHODS

The study was carried out in *capsicum* agricultural field in semi-arid tropical region of Warangal. It is located between latitude (17°-51' North) and Longitude (79°-22' E) with an altitude of 380 meters. The Soil surface inhabiting arthropod fauna were collected in the field of *Capsicum* by pitfall traps as described in Reddy and Venkataiah (1986), from June 2009 to December 2011. Wide mouth bottles of 24 cm length and 5 cm mouth diameter with 100 ml of 5 per cent formalin solution were placed as pitfall traps by, digging in to the ground randomly at ten

places. The distances between two traps maintain more than 5 meters. A flat stone was kept over each trap allowing a minimum distance of 2 cm between the mouth of the trap and the under surface of the stone to protect the trap from rain and dust, dead leaves of the crops. These bottles were collected monthly replacing every time separate bottle with fresh formalin. While replacing the bottle almost care was taken not to disturb the immediate surroundings of the trap. Besides, the trap was inspected once in every 5 days to avoid complete evaporation of formalin from the bottles. The traps after collections from the fields were tightly caped and brought to the laboratory. The content of each trap was emptied in a petri-dish. The arthropods, both the micro and macro-arthropods, were sorted under dissecting stereo scope binocular micro scope (wild M3 Heerbrugg). The arthropods belonging to different taxa were enumerated and their mean number per traps was calculated. Species identified with help of literature. The significance of the difference both in the quantitative and qualitative composition of arthropods in different habitat was analyzed. The abundance of different taxa of soil surface inhabiting arthropods was enumerated.

RESULTS AND DISCUSSION

A total of 49 species collected from different orders, Collembola, Orthroptera, Hymnopters, Coleoptera and other soil fauna, mites and spiders in three cropping seasons of Capsicum fields, from June 2009 to December, 2011 are presented in Table 1. The species composition of order Collembola Entomobrya sp., Pseudosinella sp., Isotoma trispinata, Isotoma nigrifrons, Isotoma viridis. Smintfyums viridis, Bourletiella hortensis, Sphoeridia sp., Onychiurus sp., Onychiurus armatus, and Lepidocyrtus sp. The order Orthroptera represented bv Nemobtus silvestris, Acheta domesticus, Chorlophoga viridifasciate and Melonoplus sanguinipes. The Hymenoptera order represented in

Monomorium indicum, Monomorium atomum, Monomorium criniceps, Crematogaster rothneyi, Crematogaster sp., Componotus pennsylavanices, Pochycondyla tesserinoda, Occophylla smaragdina, Wasmannia aleropunctata and Diacammon ceylonense. In Coleoptera three families were recorded. The family Tenebrionidae contains four species Mesomorphus sp., Pachycera pondicheryna. Pelopids angnamooe, Gonocephalum sp., Notocorox nervosus. In Carabidae family have five species they are *Coleolissus* Scaritesendus oliver, Scarites bengalenis, Amblystomusmangnus bates, Oryzacphilus acuaninatus. Erotylidae family recorded Lasiodactyus chevrolali. Acarina (Mites) represented Cosmolaelaps sp., Tramhidium Sligmaeus sp., Eremulus avenifer, Lamellobates palustris, Lancetoppia willmanm and Annectacarus lonoisetosus Araneida represented families. Family two Gonaphosidae represented Thanetus sp. and Storena sp., whereas Lycosidae represented Hongna carolinensis. Rabidosa punctulata, schizocosa saltatrbc, and **Pholcus** phalangiodes.

During the study period more than 7000 individuals specimens were collected, belonging to 49 species. The insect orders and number of species identified in *Capsicum* field presented (Table 1) over ninety percent of soil fauna individuals were included within these taxa-nominal groups. Collembola represented highest number of individuals (1721) followed by Hymenoptera (288), Acari (275), Coleoptera (159), Orthroptera (133), and Araneida (83).

The percentage of different soil arthropods in *capsicum* fields are given in Figure 1, 2 and 3. The results revealed that the percentage of Collembola was recorded highest percentage of 64.72 followed by Hymenoptera 10.83 per cent, Acarina 10.34 per cent, Coleoptera 5.98 per cent, Orthoptera 5.00 per cent and Araneida 3.12 per cent in 2009 (Figure 1). In 2010, Collembola

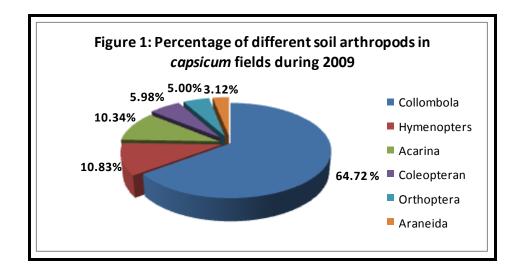
percentage was 61.34 per cent followed by Hymenoptera (Formacidae) 16.93 per cent, Acari 9.69 per cent, Coleoptera 4.19 per cent, Orthoptera 4.12 per cent and Araneida 3.72 per cent (Figure 2), while in 2011, Collembola representing 65.98 per cent followed by Hymenoptera (Formacidae) 13.55 per cent, Acari 7.36 per cent, Arneida 5.67 per cent, Coleoptera 4.34 per cent and Orthoptera 3.09 per cent (Figure 3).

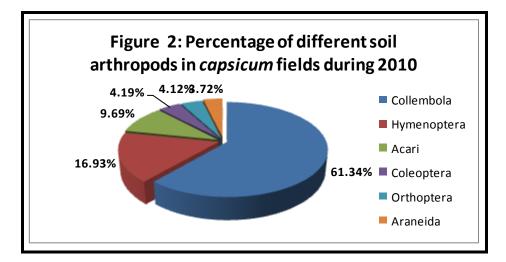
The results presented in Table 1 revealed that among the insects, Collembola was the dominant group in all the three cropping seasons followed by Hymenoptera, Coleoptera, Orthroptra. Other than insects, Araneida (Spiders) and. Acari (mites) were also recorded during study period. The abundance of ground-dwelling arthropods is considered to be important for insect management and also for managing weeds and other organism competing with cultivated crops (Stinner and House, 1990, Ball and Bousequat, 2001 and Tooley and Brust, 2002). The 3 years data showed that capsicum fields sustained abundance and species richness of ground dwelling arthropods of agronomic interest for capsicum pest management at different fields. In the study, abundance and diversity of ground-dwelling arthropods in capsicum fields were not affected during 3 successive years of growing capsicum using standard grower practices.

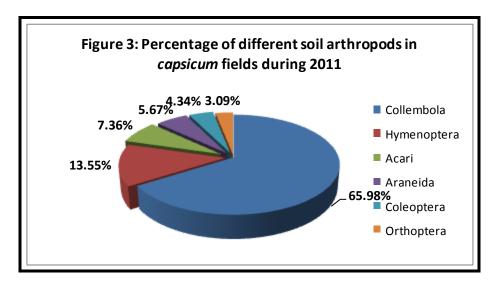
REFERENCES

- Anderson, J. M. (1988). Spatiotemporal effects of invertebrates on soil processes. *Bio Fertil Soils*, **6**:216–227.
- Ball, G. E. and Bousquet, Y. (2001) Carabidae Latreille, 1810. In American Beetles: Archostemata, Myxophaga, Adephaga, Polyphaga: Staphyliniformia, pp. 32–132. Eds R. A. Arnett and M. C. Thomas. Boca Raton, Florida: CRC Press.
- Benton, T. G., Vickery, J. A. and Wilson, J. D. (2003). Farmland biodiversity: is

- habitat heterogeneity the key? Trends Ecol. Evolut. 18(4): 182-188.
- Bianchi, F. J. J. A., Booij, C. J. H. and Tscharntke, T. (2006). Sustainable past regulation in agricultural land scope a review on land scope composition, biodiversity and natural pest control. *Proc. Royal. Soc. B.* 273: 1715-1727.
- Carvalho, F, (2006) Agriculture, Pesticides, food security and food safety, *Environ. Sci. Policy*, **9:** 685-692.
- Coleman, D. C. and Crossley, D. A. (1996). Fundamentals of Soil Ecology. Academic Press, London.
- Evans F. R. (1992) Soil maintenance by soil dwelling invertebrates. *Australian J. Ecol.*, **34**: 713-720.
- Moron, M. A. (1997). Inventories faunísticos de los Coleoptera Melolonthidae Neotropicais con potential Como bio indicators. G. Ital. *Entomol*, **8**: 265-274.
- Moron, M. A. (2001). Larvas de escarabajos del suelo enMéxico (Coleoptera: Melolonthidae). *Acta Zool. Mex.* (nueva serie) **1**: 111-130.
- Moron, M. A. (2004). Melolontídeos edafícolas, pp. 133-166. *In*J. R. Salvadori, C. J. Ávila, and M. T. Silva[eds.], Pragas de Solo no Brasil. Embrapa Trigo,Passo Fundo, Brazil. 541 pp.


- Peterson, H. and Luxton, M. (1982). A comparative analysis of soil fauna populations and their role in decomposition processes. *Oikos*, **39**: 287–388.
- Pimental, D., Stachow, V. V., Takacs, D.A., Brubaker, H.W., Dumar A.R., Meancy, J. J. O. and Neil, J. A. S. (1992). Conservation biological diversity in agricultural forestry systems. *Biosci.*, **42:** 354-362.
- Reinecke, S. A. and Reinecke, A. J. (2007). The impact of organophosphate pesticides in orchards on earthworms in the Western Cape. South Africa, Ecotoxicol, Environ. Safety, **66**(2): 244-251.
- Reddy, M. V. and Venkataiah, B. (1986). Summer abundance of soil surface arthropods in three vegetational covers of an urban ecosystem. *Environ Ecol.*, **4**: 259–262.
- Stinner B. R. and House, G. J. (1990) Arthropods and other invertebrates in conservation-tillage agriculture. *Annual Rev. Entomol.*, **35**: 299–318.
- Tooley, J. and Brust, G. E. (2002) Weed seed predation by carabid beetles. In: The Agro ecology of Carabid Beetles, pp. 215–229. Ed. J. M. Holland. Andover, UK: Intercept.
- Trombetti, S. and Williams, C. (1999). Investigation of soil dwelling invertebrates. *Ecol.*, **70**: 220-260


www.arkgroup.co.in Page 146


Table 1: Diversity of soil arthropod groups in Capsicum fields (Jun., 2009 to Dec., 2011)

ORDER	FAMILY	SPECIES	ORDER	FAMILY	SPECIES
Collembola	Entomobrydae	Entomobrya Sp	Coleoptera	Tenebrionidae	Mesomorphus sp. Pachycera pondicheryna
		Pseudosinella sp			Pelopidas angnamooe
	Isostomidae '	Isotoma trispinata			Gonocephalum sp.
		Isotoma nigrifrons			Notocorox nervosus
		Isotoma viridis		Carabidae	Coleolissus
	Sminthuridae	Smintfyums viridis			Scaritesendus oliver
		Bourletiella			Scarites bengalenis
		hortensis			4 77
		Sphoeridia sp.			Amblystomusmangnus bates
	Onychiridae	Onychhtrus sp.			Oryzacphilus acuaninatus
		Onychiurus armatus		Erotylidae	Lasiodactyus chevrolali
		Lepidocyrtus sp.			
Orthoptera	Gryllidae	Nemobtus silvestris	Acari (Mites) Mesostigmata	Mesotidae	Cosmolaelaps sp. Tramhidium sp.
		Acheta domesticus	Acari (Mites) Prostigmata	Stigmacidae	Sligmaeus sp.
	Acrididae	Chorlophoga viridifasciate	Acari (Mites) Cryptostigmata	Crypoteidae	Eremulus avenifer Lamellobates palustris
		Melonoplus sanguinipes			Lancetoppia willmanm
Hymenoptera	Formicidae	Monomorium indicum			Annectacarus lonoisetosus
		Monomorium atomum	Araneida (Spiders)	Gonaphosidae	Thanetus sp.
		Monomorium criniceps			Storena Sp
		Crematogaster rothneyi			
		Crematogaster sp.		Lycosidae	Hongna carolinensis
		Componotus pennsylavanices			Rabidosa punctulata
		Pochycondyla tesserinoda			Schizocosa saltatrbc
		Occophylla smaragdina			Pholcus phalangiodes
		Wasmannia aleropunctata			
	Ponerinae	Diacammon ceylonense			

www.arkgroup.co.in Page 147

[MS received: April 17, 2013]

[MS accepted: May 23,2013]

www.arkgroup.co.in Page 148